Mr. Keith Merkel
Merkel and Associates, Inc.
5435 Ruffin Road
San Diego, CA 92123

Subject: Bolsa Chica January 2007 Beach Profile Survey

Mr. Merkel:

This letter report presents the methods and results of the Bolsa Chica January 2007 Beach Profile Survey. The work represents the initiation of a beach monitoring program conducted in support of the Bolsa Chica Lowlands Restoration Project. The sections that follow provide an overview of the monitoring program, describe the program establishment activities, discuss the January 2007 beach profile survey, summarize the monthly beach width measurement activities, and present the results. Beach profile plots accompany this report in Attachment A, while the results of the monthly beach width measurement program are provided in Attachment B.

The vertical datum used throughout this report is North American Vertical Datum of 1988 (NAVD88), with units expressed in meters. At the project site, NAVD88 lies approximately 0.06 m above National Ocean Service (NOS) Mean Lower Low Water (MLLW) and 0.79 m below NOS Mean Sea Level (MSL; NOS, 2007). In the case of the geo-referenced data, the horizontal positions are given in meters relative to California State Plane Zone 6, North American Datum of 1983 (NAD 83).

Overview

The objective of the beach monitoring program is to develop a quantitative understanding of changes in the condition of the beaches adjacent to the newly constructed Bolsa Chica Lagoon entrance channel. The program, which commenced in January 2007, is comprised of semi-annual beach profile surveys and monthly beach width measurements at seven sites located along a 17.5 km section of coastline between Bolsa Chica State Beach and 17th Street in Huntington Beach. The beach profile surveys are conducted by Coastal Frontiers Corporation, while the beach width measurements are obtained by Moffatt and Nichol.

Figure 1 shows the locations of the beach profile transects used in the monitoring program. Two of these were established specifically for the monitoring program, and were
first surveyed in January 2007. Three of the transects had been established previously, and were included in the Coast of California Storm and Tidal Waves Study for the Orange County Region (CCSTWS-OC) conducted by the U.S. Army Corps of Engineers.

![Location Map](image)

Figure 1. Location Map

Monument Establishment/Re-Establishment

As discussed in the previous section, the beach monitoring program utilizes both historical and newly-established survey transects. Preliminary transect establishment/re-establishment activities were conducted on January 15 prior to the commencement of the initial beach profile survey. Additional establishment activities were conducted on March 30, 2007.
Two of the five historical survey monuments were recovered in good condition, while three were found to be missing or destroyed. When a monument could not be recovered, a new survey marker was established using the transect description provided by the U.S. Army Corps of Engineers. In addition to restoring the historical sites, two new transects were established.

In the case of the historical transects, a survey marker was installed along the transect alignment using differential GPS (DGPS). Similarly, survey markers were installed at the origin of the two newly-established transects. The horizontal position and elevation of four of the five newly-installed survey markers was determined on March 30 by KDM Meridian, Inc., using Real Time Kinematic (RTK) GPS techniques. The survey marker at one transect, 249+30, was outside of the radio link range of the RTK GPS system. The position of this marker will be determined at the time of the May 2007 survey.

January 2007 Beach Profile Survey

Field activities were conducted on 16 January 2007. The methods employed were similar to those used on previous Orange County surveys conducted for the U.S. Army Corps of Engineers. In consequence, the results are directly comparable. The following sections discuss the data acquisition and reduction methods for the January 2007 Beach Profile Survey.

Beach Profile Data Acquisition

The initial beach profile survey was conducted on 16 January 2007. The wading and bathymetric portions of the survey were performed concurrently by two crews. Data were acquired along each transect from the back beach to a depth of approximately 14 m below NAVD88. Conditions were challenging, with brisk offshore winds and waves typically less than 1 m. However, the conditions did not adversely impact data quality.

The beach and surf zone were surveyed using a total station and a survey rodman. The total station was used to determine the position and elevation of the beach at each location occupied by the rodman. Each transect was surveyed from the back beach seaward through the surf zone until the survey rod no longer protruded above the water surface when held erect. This location, typically in a water depth of 3.0 to 3.5 ft below NAVD88, provided substantial overlap with the landward portion of the bathymetric survey.

Bathymetric data were collected with a digital acoustic echo sounder operated from a shallow-draft inflatable survey vessel. A dynamic motion sensor, which provides real-time corrections to the echo sounder for wave-induced vessel heave, also was utilized. A GPS receiver was used to determine the position of each sounding. To improve the accuracy of each position, differential corrections transmitted in real-time from U.S. Coast Guard
beacons were utilized (DGPS). All systems were interfaced to a laptop computer using the Hypack Max survey package.

The boat traveled along each transect from the offshore terminus to the surf zone guided by DGPS navigation. Soundings were acquired on a continuous basis (approximately 3 soundings per second), while positions were recorded at 1-second intervals. The DGPS position data and sounding data were merged using the Hypack software, with interpolated positions being assigned to the soundings acquired between position fixes.

The calibration of the echo sounder was checked at periodic intervals during the survey using a standard “bar check” procedure. In addition, measurements of the speed of sound in sea water also were obtained at the offshore end of each transect using a recording conductivity, temperature, and depth (CTD) instrument.

Beach Profile Data Reduction

The data from the wading portion of the survey were processed using software developed by Trimble. The raw total station data were read by the software, and the coordinates and elevation of each data point were calculated and inserted into a CAD drawing.

The raw data from the bathymetric portion of the survey consisted of Hypack files containing the position data and heave-compensated soundings. These data were edited for outliers using the Hypack Single-Beam Processing Module. The dynamic motion sensor utilized during the survey removed the majority of the wave contamination from the record in real time. However, to further minimize the influence of wave-induced vessel motion on several transects, a smooth line was fairied through the echo sounder record prior to digitizing it with the Hypack software package.

Corrections for the draft of the transducer and the measured speed of sound in sea water then were applied to the measured depths. The speed-of-sound profiles were confirmed using the results of the “bar check” calibration procedure. Finally, the corrected soundings were adjusted to NAVD88 datum using tide measurements made by the U.S. Department of Commerce, NOAA, at Los Angeles Harbor. To provide a more accurate representation of local tide conditions, the water levels recorded at Los Angeles Harbor were adjusted to the project site using the time and height differences published by NOAA (NOS, 2007).

The adjusted soundings were thinned to a nominal interval of 3 m to produce a manageable file size suitable for developing beach profile plots. The resulting x, y, z data (easting, northing, and elevation) were inserted into the CAD drawing containing the wading
data. As indicated above, the field work was conducted in such a manner as to provide substantial overlap between the wading and bathymetric portions of the survey. The processed data were examined in this region to insure that the two data sets were compatible. Once this confirmatory inspection had been completed, only the more detailed data in the region of overlap were retained (typically the bathymetric data). The less detailed data were purged, after which the wading and bathymetric data were merged to create a single digital file.

Based on past experience, the vertical accuracy of the processed soundings is approximately ±15.0 cm. According to the GPS equipment specifications, the root mean square (RMS) accuracy of horizontal positions obtained in the manner described above is 95 cm. The electronic total station used to conduct the survey is capable of measuring elevation differences to within ±3 cm and ranges to within ±15 cm. However, because the swimmer was subjected to waves and currents in the surf zone, the horizontal accuracy perpendicular to each transect (parallel to the shoreline) varied from minimal at short ranges to approximately ±5 m at the offshore end.

Monthly Beach Width Measurements

As indicated previously, the Beach Width Measurement Program is conducted by Moffatt and Nichol. Monthly beach width measurements were acquired at each of the seven profile sites, commencing in January 2007.

The measurements were collected at tide heights ranging from -0.08 m to 1.96 m (MLLW). The beach width was recorded as the distance from a permanent point at the back beach to the approximate intersection of the still water line and the beach face. The foreshore slope also was measured and recorded along with the date and time of the observation. The measurements then were adjusted to approximate the MSL beach width using the foreshore slope and NOAA tide elevations. Although inherently less accurate, the method provides a cost-effective means to supplement the more accurate MSL beach widths derived from the semi-annual beach profile survey data.

In addition, the distance form the back beach to the berm was measured. These data will be used to supplement similar measurements that have been obtained by the U.S. Army Corps of Engineers since the 1970’s.

Results

The beach profile plots developed from the January 2007 survey data are provided in Attachment A. The plots for the five historical transects also display beach profile data obtained in March 2002 (the most recent survey preceding the lagoon restoration activities). The range on each profile plot represents the distance in meters seaward of the transect.
origin. The CCSTWS-OC survey monument serves as the origin for the historical transects, while the survey markers are used for the newly-established transects. The elevations are given in meters relative to NAVD88. A profile plot for Transect 249+30 is not included due to the aforementioned lack of vertical control at the site.

The results of the beach width measurement program are provided in Attachment B. The beach width and berm distance measurements should be regarded as preliminary. These data will be finalized after additional control information is obtained at the time of the May 2007 Beach Profile Survey.

The January 2007 beach profile data, which consist of an ASCII file of northing, easting, and elevation triplets (n,e,z) for the entire survey, were delivered electronically on April 30, 2007. In the case of the geo-referenced data, the horizontal positions are in meters relative to California State Plane Zone 6, NAD 83. As indicated previously, elevations are given in meters relative to NAVD88. The data for Transect 249+30 will be available following the May 2007 survey.

A detailed assessment of beach changes will be provided in the annual report. General observations are offered, however, based on the data products presented in the attachments, the MSL shoreline positions provided in Table 1, and the summary of the MSL beach width observations given in Table 2.

Table 1. MSL Shorelines Positions Derived From Beach Profile Data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>249+30</td>
<td>20.6 m</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>311+22</td>
<td>80.3 m</td>
<td>90.4 m</td>
<td>10.1 m</td>
</tr>
<tr>
<td>318+30</td>
<td>-</td>
<td>66.5 m</td>
<td>-</td>
</tr>
<tr>
<td>333+30</td>
<td>-</td>
<td>60.9 m</td>
<td>-</td>
</tr>
<tr>
<td>350+71</td>
<td>65.5 m</td>
<td>61.7 m</td>
<td>-3.8 m</td>
</tr>
<tr>
<td>378+29</td>
<td>34.7 m</td>
<td>39.9 m</td>
<td>5.2 m</td>
</tr>
<tr>
<td>423+89</td>
<td>98.4 m</td>
<td>112.4 m</td>
<td>14.0 m</td>
</tr>
</tbody>
</table>

Notes:
1. MSL shoreline position reckoned from CCSTWS-OC monument for historical transects, and from the survey marker for the newly-established transects.
3. MSL beach width to be determined after additional control information is obtained.
Table 2. Beach Width Measurement Program Summary Statistics

<table>
<thead>
<tr>
<th>Transect</th>
<th>Distance to Berm (m)</th>
<th>MSL Beach Width (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range</td>
<td>Ave</td>
</tr>
<tr>
<td>249+30</td>
<td>61-94</td>
<td>82</td>
</tr>
<tr>
<td>311+22</td>
<td>70-74</td>
<td>72</td>
</tr>
<tr>
<td>318+30</td>
<td>64-72</td>
<td>69</td>
</tr>
<tr>
<td>333+30</td>
<td>40-49</td>
<td>43</td>
</tr>
<tr>
<td>350+71</td>
<td>38-45</td>
<td>41</td>
</tr>
<tr>
<td>378+29¹</td>
<td>10-16</td>
<td>12</td>
</tr>
<tr>
<td>423+89</td>
<td>86-87</td>
<td>86</td>
</tr>
</tbody>
</table>

Note: ¹ Measurements should be regarded as preliminary, and may be adjusted after additional control information is obtained during the May 2007 beach profile survey.

1.) Shoreline Changes 2002 to 2007 (Table 1): Between March 2002 and January 2007, the MSL shoreline advanced at three of the four sites for which such data are available. The greatest shoreline advance occurred at Transect 423+89, and measured 14.0 m. The only occurrence of shoreline retreat was a loss of 3.8 m at Transect 350+71.

2.) Beach Width Measurements (Attachment B; Table 2): During the three month period between the January and April observations, the MSL beach width increased at six of the seven sites, and retreated at the remaining site. The greatest shoreline advance was 30 m, and occurred at Transect 249+30. The maximum shoreline retreat -12 m, occurred immediately south of the Bolsa Chica entrance channel at Transect 333+30. Immediately north of the entrance channel (Transect 318+30), the shoreline advanced 3 m between January and April 2007.
We have sincerely appreciated the opportunity to assist Merkel and Associates, and look forward to continued participation in the Beach Monitoring Program. Please do not hesitate to contact me if you have any questions or require additional information.

Sincerely,
Coastal Frontiers Corporation

Gregory E. Hearon, P.E.
Project Manager

GEH:hs
Attachments: (A) Beach Profile Plots,
(B) Monthly Beach Width Measurement Results

References

Attachment A

Beach Profile Plots
Attachment B

Monthly Beach Width Measurement Results
Transect 249+30

Note: Measurements are preliminary, and may be adjusted after additional control information is obtained during the May 2007 beach profile survey.

Transect 311+12

Note: Measurements are preliminary, and may be adjusted after additional control information is obtained during the May 2007 beach profile survey.
Note: Measurements are preliminary, and may be adjusted after additional control information is obtained during the May 2007 beach profile survey.
Transect 350+71

Note: Measurements are preliminary, and may be adjusted after additional control information is obtained during the May 2007 beach profile survey.

Transect 378+29

Note: Measurements are preliminary, and may be adjusted after additional control information is obtained during the May 2007 beach profile survey.
Transact 423+89

Note: Measurements are preliminary, and may be adjusted after additional control information is obtained during the May 2007 beach profile survey.